

The TWIN-Radiotelescopes Wettzell Critical Design Points

G. Kronschnabl, BKG; Dr. A. Neidhardt, TUM; Dr. K. Pausch, Vertex GmbH; W. Göldi, Mirad; R. Rayet, Callisto; A. Emrich, Omnisys;

➔ Improving of the Celestial Reference Frame (CRF)

Source: IVS WG3 Final Report - ftp://ivscc.gsfc.nasa.gov/pub/annual-reports/2005/pdf/spcl-vlbi2010.pdf

- Increasing the numbers of radio sources (up to 1000 scans/day!)
- Improvement of the Delay Observable
- Reduction von systematic errors, i.e. at the electronic devices, the antenna deformation and of the source structures
- Continuous observation rows the whole year (2 antennas)
- Improving of the network geometry
- New improved strategies at the data analysis
- Improved observation schedules
- Additional measurement system, such as a WVR
- Online data transfer via Internet
- Software correlation
- Remote observations

VLBI 2010

What are the requirements for a new observation system to fulfill the VLBI 2010 specifications?

- A fast moving antenna system with an antenna diameter of 12m or more
- A broadband receiving system at least from 2 to 14 GHz, optional a receiver at S-, X-, and Ka-Band
 - → S- und X-Band compatibility (RCP)
 - → stable phase centre and stable reference point
 - → high antenna efficiency and low system temperature
- Improved reference and calibration systems
- New digital data acquisition systems

- increase the number of observations means:
- Reducing the observation time (i. e. the Integration time) needs a
 - \rightarrow better SNR \rightarrow (< Tsys; > higher effective Antenna area)
- higher bandwidth (New feeds, new receivers; data boosters)
- Reducing the slewing time needs
- → faster antenna drives
 - more energy consumption
 - → a better mechanical construction
- more attrition and therefore more maintenance
- reduce systematic errors, such as at the electronic devices, the antenna deformation and additional calibration systems:
- → better time and frequency reference
- → improving of the phase delay errors, for instance at the cables
- new improved calibration systems
- → additional measurement systems → Water Vapor Radiometer ?

What are the key points for such an Antenna?

- Antenna diameter size 12m or more
- Fast moving antennas
- Broadband or multiband capability
- Extreme stiff reflector
- High efficiency reflector
- Low path length error
- Very good and stable reference point
- Very stabile towers
- Phase stable cables and cable wraps
- Stabile phase centre of the feed (almost frequency independent)
- Remote control
- Energy saving techniques
- Improved time and frequency reference system

How did we realized that at Wettzell?

Microwave Antenna design:

- Excellent antenna efficiency by the Ringfocal Design a flare angle of about 65°
- No blockage by the Subreflector
- Broadband capability > 40 GHz
- Low ground pickup noise
- Mechanical correction of the Subreflector

Mechanical Antenne design:

- Very low Path Length Error
- Extreme stiff Main- and Subreflector,
- Extreme stiff Elevation cabin and Azimuth yoke
- Excellent Azimuth- and Elevation bearings
- High resolution hollow shaft encoder
- Very stable towers with a big basement
- Vertical and horizontal axis offset less than 5 arcsec
- Balanced antenna design with counterweights

TWIN - Radioteleskop

Technical Data:

- Main reflector: 13.2m
- Ringfocal-Design
- f/D = 0.29
- Path Length Error <0.3mm
- ALMA Mounting with drive velocities of 12°/s in Azimuth and 6°/s in Elevation
- Drive range +/- 270° & 115°
- Balanced antenna design
- Excellent bearings
- 27Bit Encoder : 0.0003° resolution
- Subreflector adjustable by a Hexapod

-2.5

12.5 -15

-20

-22 5

-25

-65

Federal Agency for Cartography and Geodesy

TWIN Radioteleskop: Main reflector

Effective beam efficiency Distribution of the radiated energy 13.2m Ring Focus Antenna 13.2m Antennas with Gaussian Beam Feeds (-12dB at Subreflector Rim) perture Field Distribution, f = 5 GHz Aperture Effenciency y [%] - Dualoffset-Antenna Antenna -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 15 2 25 3 35 4 4.5 Frequency (GHz) rho [m] 1.48m **Ringfocal-Design** • Dual-Reflector receiving system • optimal for large flare angles • no blockage by the subreflector

- high illumination efficiency
- the feed horn is prevented by radiation from the sun

Source: Willi Göldi, Mirad; FRFF-Workshop 2009, Wettzell

13.2m

Antenna efficiency and ground noise pickup

Federal Agency for Cartography and Geodesy TWIN – Radioteleskop: Path Length Error

The TTW-Antenna is designed for a Path Length Error of less than 0.3mm !!

Source: Vertex Design Review; Dez. 2008

Towers for TTW

- Basement up to 6m in the ground
- Thick concret walls containing tons of steel

Zul. φ _{OKT} ≤ 0,0005 °	Unter Wind ≤ 40 km/h, Böen bis 50 km/h
Zul. φ _{OKT} ≤ 0,0015 °	Unter Temperatureinwirkung

TWIN – Radiotelescope: Main reflector construction

Photogrammetry

Main reflector

FAT Subreflector

Antenne #1: Abschlussmessung (58° Elevation)

Reference planes of TTW

Bezeichnung	FE-Analyse		Fotogrammetrie	
	0° El	90° El	0° El	90° El
Oberflächenfehler RMS [µm]	149	131	128	123

Tab. 2-13: Oberflächenfehler des Hauptreflektors

Bezeichnung	Transformierte FE-Daten	Fotogrammetrie
Verschiebung y _{Hr} [mm]	0.71	0.51
Verkippung φ _{x,Hr} [Grad]	-0.021	-0.019

Tab. 2-14: Vergleich von Hauptreflektordaten bei der Elevationsänderung 90°->0°

Abb. 2-1: FE-Modelle der TTW-Antenne bei 0 Grad, 58 Grad und 90 Grad Elevation

Prinzipskizze zur Referenzfläche für die Fotogrammetrie

The TWIN-Radiotelescopes Wettzell; TecSpec-Meeting 2012 - 01-02th March 2012 Bad Kötzting

 \cap

.00106

.00212

.00318

.004239

.005299

.006359

.007419

.008479

.009539

Deformation of the Subreflector

Elevationsänderung: 90° -> 58°	Wert	Einheit
Verschiebung in x-Richtung	-0.02	[mm]
Verschiebung in y-Richtung	1.24	[mm]
Verschiebung in z-Richtung	0.26	[mm]
Verkippung um die x-Achse	0.003	[deg]
Verkippung um die y-Achse	0.002	[deg]

 Tab. 10-1:
 Messprotokoll der gemessenen Subreflektorverschiebungen und -verkippungen bei Elevationsänderung von 90° nach 58°

Elevationsänderung: 90° -> 0°	Wert	Einheit
Verschiebung in x-Richtung	-0.07	[mm]
Verschiebung in y-Richtung	2.30	[mm]
Verschiebung in z-Richtung	2.20	[mm]
Verkippung um die x-Achse	0.006	[deg]
Verkippung um die y-Achse	0.005	[deg]

 Tab. 10-2:
 Messprotokoll der gemessenen Subreflektorverschiebungen und -verkippungen bei Elevationsänderung von 90° nach 0°

LF1 = Loading at 58° without Subreflectorcontroller LF2 = Loading at 58° with Subreflectorcontoller

LF3 = Load with wind speed 40km/h ahead

LF4 = Load with wind from one side

Abb. 2-3: Kopfteil mit Subreflektor und Auswertepunkte P1 und P2

Bezeichnung	Transformierte FE-Daten	Messung Mittelwert	
Verschiebung y _{Sr} [mm]	2.64	2.30	
Verschiebung z _{Sr} [mm]	1.73	2.07	
Verkippung φ _{x,Sr} [Grad]	0.005	0.007	

Tab. 2-15: Vergleich von Subreflektordaten bei der Elevationsänderung 90°->0°

LF	Gain 33 GHz [dBi]	∆-Gain [dB]	η	RMS σ [mm]
nominell	72.412			
1	72.193	-0.219	0.951	0.16
2	72.318	-0.094	0.979	0.11
3	72.408	-0.004	0.999	0.02
4	72.409	-0.003	0.999	0.02

Tab. 3-1: Betrachtung des Antennengewinns

16

Measurements of the vertical and horizontal axis and the intersection point

Darstellung von Messwerten der Azimutachsmessung sowie deren Bestfit-Sinusfunktion

The Triband-Feed for TTW 1

First measurement results of the new Triband-Feed

Broadband-Receiving-System: Eleven-Feed

Design proposal for the Eleven-Feed

Figure 2. Eleven feed based VLBI2010 front-end

Design Proposal Dewar

Principle Schematic

Source: A. Emrich; Omnisys.; Sweden

20

Federal Agency for

Cartography and Geodesy

- How to mount the Helium Compressor in the Elevation cabin?
- How to do a coldhead cylinder maintenance without removing the whole feed?

Other topics: Cable warp and feed blower

- Choosing a cable wrap for 1000 observations a day and a high drive velocity
- Choosing RF-cables for the signal and for the frequency reference
- Choosing fiber cables for a cable wrap and 1000 bend cycles
- How to prevent the feed foils from rain, snow and ice ?

and so on

- Green Mode Observation
- Loading the deceleration energy back into the power network
- Heat transfer from the electronic devices and servers to warm up the main building
- Good thermal isolation of the main building and the towers

February 2012

